Neural Network Model Predictive Control Applied to a Fed-batch Sugar Crystallization
نویسندگان
چکیده
This paper is focused on a comprehensive study of neural network (NN) model based predictive control (MPC), as an operation strategy for a fed-batch sugar crystallizer. The process is divided into four subsequent control loops and for each of them an individual NN-based MPC is designed. The operation is tested for a number of scenarios and is compared with alternative (linear and batch nonlinear MPC) control solutions. The results demonstrate that the NN-MPC is a promising alternative of the traditionally applied linear controllers when the process is strongly nonlinear and input-output data is the only process information available.
منابع مشابه
Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process
This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control inpu...
متن کاملApplication of Feed Forward Neural Networks in Modeling and Control of a Fed-Batch Crystallization Process
This paper is focused on issues of nonlinear dynamic process modeling and model-based predictive control of a fed-batch sugar crystallization process applying the concept of artificial neural networks as computational tools. The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, ...
متن کاملDue to the highly competitive nature of the today’s crystallization industry, model-based predictive control
This paper is focused on issues of nonlinear dynamic process modeling and model-based predictive control of a fed-batch sugar crystallization process applying the concept of artificial neural networks as computational tools. The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, ...
متن کاملطراحی کنترل کننده پیش بین سیستم بویلر- توربین
A nonlinear model predictive control (NMPC) algorithm based on neural network is designed for boiler- turbine system. The boiler–turbine system presents a challenging control problem owing to its severe nonlinearity over a wide operation range, tight operating constraints on control move and strong coupling among variables. The nonlinear system is identified by MLP neural network and neur...
متن کاملPii: S0925-2312(01)00680-4
The paper presents a structured approach to building neural network models for a fed batch bioreactor to allow the development of reactor optimal control policy. Since the ultimate interest in batch bioreactor control is on the end-of-batch product quality, accurate long range predictions are essential in developing optimal control policy. To address the long range prediction issue, an augmente...
متن کامل